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Queueing models have been applied to the fault detection and correction process [1,2]. In
addition, analysis of the time spent by faults in a software testing system has led naturally
to an increased interest in the dynamics of queuing networks, which are used to model such
systems. Analytical as well as simulation models have been used to study the behavior of
queues and fault correction stations in testing systems [3]. Both analytical and simulation
models are employed in an attack on relieving fault bottlenecks in fault correction systems.

I. Introduction

WE all know about people queuing up to check out at a grocery store. Perhaps less obvious is the concept of
faults that have been detected in during software testing queuing up to be corrected. Testing is an important

software development function. Interestingly, testing is essentially a queuing process. When a fault is in a queue, it
attempts to move to a fault correction station (see Fig. 1). If, at that moment, the station is full, the fault is forced
to reside in the queue until a place becomes available in a station. The queue remains blocked during this period
of time [4]. Therefore, it may not be possible to test, detect faults, and correct faults immediately because there
could be queue of faults that are being corrected; therefore, the faults must be queued and wait their turn for service.
Therefore, queuing models are employed to estimate quantities such as wait time, service time, and number of faults
waiting for service.

There are two ways that queues can be analyzed. One way is by analytical models whose solutions represent steady
state or mean value solutions. These models also assume a single queue feeding multiple fault correction stations
as shown in Fig. 1. This is akin to banks in which a single queue feeds multiple teller stations. Another approach
is simulation that is similar to the approach of discrete-event simulation [5] that is used to analyze reliability of
component-based software. This approach relies on random generation of faults in components using a procedure
that computes the interfailure arrival time of a faults into queues [6]. Simulation has the advantage of providing finer
grain solutions of, for example, number of faults in individual fault correction stations. In this approach, as shown
in Fig. 2, multiple queues feed multiple stations. We use this configuration because the NASA Shuttle software
testing process involves multiple testers detecting faults that form multiple queues 1, . . . , i, . . . , n and, for efficiency
purposes, streams of faults are fed from the queues into multiple correction stations 1, . . . , c, . . . , m (i.e., fault
correction specialists and computers).

We use both approaches in this paper and compare results. The analytical approach use the classical models [7].
For the simulation approach, we wrote a C++ program. Results will differ because the simulation model uses random
number tests to determine when an event, such as a fault entering a queue, would occur, whereas the analytical model
does not deal in events. Rather, it computes expected values, such as the expected number of faults in a queue.
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Fig. 1 Analytical model queueing process.

Objectives
One objective is to identify the optimal number of fault correction stations, where “optimal” is defined as the

number of stations where additional stations would yield diminishing returns in correcting faults. A second objective
is to identify which faults may require excessive processing time. This is done in order to feed back this information
to improve the development process. Another objective is to compare assignment of faults to correction stations in
order of occurrence with assignment based on choosing the station with minimum existing fault count. The first plan
corresponds to the situation where we must attempt to correct faults without delay. The second plan corresponds to
batching the faults for the purpose of achieving fault correction efficiency. In order to implement this plan, the faults
counts are sorted in ascending sequence and assigned to the first empty station.

II. Queuing Models for Software Development
As an example of a fault detection and correction system, we model multiple fault correction stations (i.e.,

servers) using fault data from NASA Space Shuttle release OI4 (operational increment). As opposed to classical
queuing models that are restricted to using steady state or mean values, we model the queue discipline as individual
faults occur. In order to determine whether the faults occur according to an exponential distribution, we conducted
a t-test of the actual times between fault occurrences vs an exponentially distributed set derived from its mean. The
probability of the two sets coming from the same population is 0.9288.

A. Analytical Model
1. Fault Generation

We see in Fig. 1 that a stream of new faults Nni attempt to enter the fault correction system. Whether they will be
“admitted” depends on whether they will be detected. We generate this quantity by using the simulation program.
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Fig. 2 Simulation model queuing process.

The analytical model is supported by the simulation model to the extent that a stream of faults attempting to enter
the system are subjected to a detection test by comparing Pdi , generated by random numbers, with test values, also
generated by random numbers. If the test succeeds, Nni is incremented by “1”; otherwise, no incrementation takes
place.

2. Fault Severity
Queuing theory has been applied to correcting software maintenance problems. The mean time to correct faults is

a useful process metric. The most severe faults can preempt less severe faults. Given the reasonable assumption that
the most severe faults have the highest impact on reliability, reducing correction time is given priority attention [8].
Therefore, it is appropriate to consider the severity of faults when analyzing a fault correction system because the time
to correct faults, and the number of faults at correction stations, is a function of their severity. Furthermore, increased
correction times caused by high severity impact the time that faults wait to be corrected. This is analogous to the
supermarket when customers with complex purchases cause large processing times at the checkout counter causing
long lines and waiting times of other customers. To reflect this condition, we compute a fault severity weighting
factor wij in equation (1) and apply it to increase the appropriate quantities below. Of course these quantities do not
actually increase, but the weighting scheme is a method to more realistically represent the fault queue process. Note
that for these severities, si1 is the most severe and sim is the least severe, but si1 has the lowest numerical value and
sm has the highest value. Given these conditions, the weights in equation (1) sum to 1.0 over the m severity levels.

wij = (1 − (sij /sim))

2
(1)
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3. Faults in Queue
Once the number of new faults Nni has been generated, the weighted expected number of faults ni in the queue

when fault i occurs in Fig. 1 is determined by whether the new faults are detected, as shown in Eq. (1a) as follows:

ni = (Nni ∗ Pdi)(1 + wij ) (1a)

4. Fault Occurrence Rate
The occurrence rate of fault i is given by the reciprocal of the time between fault i and fault i + 1 occurring in

Eq. (2) as follows:

λi = 1

tai

(2)

5. Uncorrected Faults
The expected number of uncorrected faults after faults have been processed at stations is computed by noting in

Fig. 1 that some of the ni faults do not get corrected. Thus, accounting for probability of fault correction, Pci , we
have

Nui = (ni) ∗ (1 − Pci) (3)

6. Queue Utilization
Now we compute queue utilization, a critical parameter that is the probability of the queue being busy, or the

utilization of the queue when fault i occurs, noting that to compute utilization, we must increase the occurrence of
faults ni by the fault severity weight.

ρi = ni∑q

i=1 ni

(4)

7. Queue Dwell Times
The total time that faults spend in fault correction system is equal to the total number of faults in the queue divided

by the fault input rate, increased by the fault severity factor as follows:

ti = ni

λi

(5)

The time that a fault spends being corrected increases with queue utilization ρi , for given number of stations c

and time between fault occurrences tai , and is computed in Eq. (6) as follows:

tsi = ρi(ctai) (6)

The fault wait time is computed in Eq. (7) by subtracting the time that faults spend being corrected, computed in
Eq. (6), from the total time that faults spend in the fault correction system, computed in Eq. (5) as follows:

twi = ti − tsi (7)

8. Queue Correction Counts
Using the time faults spend being corrected from Eq. (6) and the fault occurrence rate, the number of faults being

corrected is computed in Eq. (8) as follows:

nsi = λitsi (8)

9. Queue Correction Rates
Using Eq. (6), we can compute the rate of fault correction in Eq. (9) as follows:

μi = 1

tsi
(9)
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10. State of the System
If there are zero faults in the system, this is a good omen for fault i because it can be processed for correction

without delay. Thus we would like to know the probability of the state of the system. The probability of zero faults
in the fault correction system when fault i occurs is computed in Eq. (10) [7] as follows:

p0i = 1

Di

(10)

where

Di =
c∑

ni=0

(
(cρ)ni

ni ! + (cp)c

c!(1 − ρ)

)
(11)

Then the probability of ni � 0 faults in the fault correction system is given by Eq. (12) as follows:

pni = 1 − p0i (12)

An important concern in software testing is: what is the probability that a fault will end up being queued [9]?
Another way of phrasing this question is: what is the probability of ni faults already in the queue when fault i is
detected? If ni is too large, faults are blocked [10], and deferred for later processing. Using Eq. (10), we compute
this probability in Eq. (12a) as follows:

Pni = p0i

(
(λi/μi)

ni

nj !
)

(12a)

11. Wait Queue Counts
Since, in general, faults cannot be corrected immediately, we use Eq. (10) to compute the number waiting in the

queue for correction as follows:

nwi = λitwi (13)

12. Efficiency of Testing
The efficiency of testing fault i is computed as follows, where Nui is the number of uncorrected faults and t is the

time spent in the fault correction system:

Ei = ni − Nui

ti
(14)

B. Simulation Model
Simulation can be considered as a tightly coupled and iterative three-staged process comprised of model design,

model execution, and execution analysis [11]. Our model design is represented in Fig. 2. Model execution is
represented by Fig. 3 and by the equations below. Execution analysis is the reporting of simulation results in Sec. III.

As in the case of the analytical model, it is necessary to account for effect of fault severity by weighting the number
of faults in queue i, ni , and the number of faults in correction station, nc, by the factor (1 + wij ). Thus, borrowing
Eq. (11) from the analytical model, the number of faults in queue i, ni , are weighted in Eq. (14a). The weighting
factors are computed by Eq. (1). Since the faults nc are the summation of faults ni , as shown in Fig. 3, these faults
will have been weighted.

ni = (Nni ∗ Pdi)(1 + wij ) (14a)

1. Test Time, Time of Fault Occurrence, and Fault Occurrence Rate
Through testing, NASA faults occur at times Ti (see Fig. 2) [12], where nc represents the number of faults that

are assigned to fault correction station c. Since nc faults are in station c at time Ti , the test time per fault is computed
as follows:

ti = Ti

nc

(15)
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Fig. 3 Simulation model queuing computations.

We are interested in computing the occurrence rate of i faults, λi , and comparing it with the fault correction rate
μi to see whether the correction rate can keep up with the occurrence rate. If it cannot, this means that the fault
correction system becomes unstable. First, we need the time between consecutive fault occurrences, tai , computed
in Eq. (16) as follows:

tai = Ti+1 − Ti (16)
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Then using Eq. (16), the fault occurrence rate is computed as follows:

λi = 1

tai

(17)

2. Queue Utilization
In the simulation model we compute the weighted utilization for each queue. This approach gives a more realistic

assessment of utilization than is the case with the analytical model that computes a utilization for a single queue.
The approach is initiated by detecting a fault in Fig. 2, incrementing the number of new faults Nni , computing the
number of faults ni in queue i, and assigning them to fault correction stations. This is accomplished in Fig. 2 and
in the C++ simulation program by sorting the ni faults in ascending order, summing the faults in pairs of adjacent
queues, and assigning the pairs sequentially from 1 to m, where m is the number of stations. The utilization of each
fault queue i is computed as follows:

ρi = ni∑q

i=1 ni

(18)

3. Fault Correction Station Utilization
In addition to queue utilization, it is important to compute the utilization of each fault correction station because,

after all, this is where the primary action in software testing takes place. Therefore, the weighted utilization of fault
correction station c is computed in Eq. (19) where nc is the number of faults assigned to station c and m is the number
of stations. Note that the denominator in Eq. (18) is equal to the denominator in Eq. (19) because all of the faults are
assigned to the stations.

ρc = nc∑m
c=1 nc

(19)

4. Fault Correction Rate and Time
In order to compute the station fault correction rate μc, we must sum the fault occurrence rates in the queues λi ,

to arrive at a fault occurrence rate for fault correction station c, as shown in Eq. (20) as follows:

μc =
∑c

i=1 λi

cρc

(20)

Once fault station correction rate has been computed in Eq. (20), we can compute the fault station correction time
tsc in Eq. (21) as follows:

tsc = 1

μc

(21)

5. Time Spent in System and Input Rate
Now we can compute the time faults spend in the fault correction system (waiting to be corrected and being

corrected) tc by using the rate of fault input to fault correction stations, λc, and the number of faults nc at the stations
in Eq. (22).

tc = nc

λc

(22)

Using Eqs. (19) and (20), the input rate to fault correction stations is computed in Eq. (23) as follows:

λc = ρcμc (23)
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6. Wait Time, Number Waiting, and Number Being Corrected
Then, once the fault correction time is computed in Eq. (21), the time that faults have to wait to be corrected twc

is computed by Eq. (24):

twc = tc − tsc (24)

Continuing, with twc in hand, we can compute the number of faults waiting to be corrected nwc as follows:

nwc = λctwc (25)

Using the time that faults spend being corrected tsc from Eq. (21), we compute the number of faults being corrected
in Eq. (26) as follows:

nsc = λctsc (26)

7. Uncorrected Faults
As noted in Fig. 2, not all faults are corrected due to deficiencies in the test process (e.g., inadequate test cases).

Therefore we need to estimate the number of faults from station c that were not corrected by multiplying the number
of faults in station c by the probability of not correcting faults, as shown in Eq. (27) as follows:

Nuc = nc ∗ (1 − Pc) (27)

8. Testing Efficiency
Testing efficiency at correction station c is computed as follows, where Nuc is the number of uncorrected faults

and tc is the time faults spend in station c. The objective is to identify the number of stations that maximizes the ratio
of number of corrected faults to time spent in the station:

Ec = (nc − Nuc)

tc
(28)

9. Fault Correction Effectiveness Metric
Since waiting time, correction time, and total time spent in the fault correction system are quantities that correspond

to all faults waiting, being corrected, and total number in system, respectively, it is important to normalize these
quantities by their respective number of faults, where Mwc is normalized wait time, Msc is normalized correction
time, and Mc is normalized total time.

Mwc = twc

nwc

, Msc = tsc

nsc

, Mc = tc

nc

With some algebra, it can be shown that all three metrics reduce to:

Mc = 1

λc

(29)

the reciprocal of the fault input rate to station c. At first blush, this result seems counterintuitive, but upon reflection,
we can see that an increasing input rate lead to efficiency in fault correction because the station is kept busy. This
result holds up as long as the station utilization does not become excessive (i.e., ρc > 0.90). The objective is to
identify the number of stations that minimize Eq. (29).

A similar result holds for the analytical model with

Mc = 1∑c
i λi

(30)

pertaining to the metric for station c. The fault occurrence rates are summed in Eq. (30) in order to provide a fair
comparison with Mc in the simulation model that uses summed occurrence rates.
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III. Model Results
A. Test Time Tradeoffs

Of great concern to software testers is the tradeoff between test effort, represented by test time, and the number
of faults removed by the test effort. Figure 4 shows that testing and queuing efficiencies increase with increasing
number of fault correction stations. However, increasing the number of fault correction stations may not be feasible
[13] because doing so would require more test personnel and computer equipment. Therefore, a practical value of
number of fault correction stations in Fig. 4 is c = 3. The application of this plot would be to serve as a planning
document for subsequent releases of the software, assuming similar testing and fault occurrence characteristics, as
is the case with the Shuttle. The reason for the large values of test time and time in the system is that the Shuttle
software is tested continuously by the developer, in the simulation testbed, in the Shuttle Simulator for astronaut
training, at the launch site, and in flight [14].

B. Optimal Number of Fault Correction Stations, Test Efficiency, and Fault Correction Effectiveness
As stated, one of our objectives is to identify the optimal number of fault correction stations to use in a software

testing system, where “optimal” can have several interpretations. One interpretation is the number of fault correction
stations whether testing efficiency is maximum. This occurs at c = 4 in Fig. 5 for both the analytical and simulation
models. Of course, each application would have a different solution, but the type of plot in Fig. 5 serves as a roadmap
for any application.

A second way of viewing station optimality is to employ fault correction effectiveness, as illustrated in Fig. 6.
Here, the solution is the same using the simulation model, as was the case in Fig. 5. However, now the solution is
c = 2 for the analytical model compared with c = 4 in Fig. 5. Now what if the solutions differ, as in this case. The
way to solve the dilemma is to choose the fault correction effectiveness criterion if this is a safety critical application,
as in the case of the Shuttle. Otherwise, opt for the testing efficiency solution.
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Fig. 6 NASA Space Shuttle OI4: fault correction effectiveness metric Mc vs number of fault correction stations c.

C. Worst Case Number of Fault Correction Stations
Equally important with identifying the optimal number of fault correction stations is the identification of the “worst

case” situation. This criterion is based on the number of fault correction stations corresponding to the maximum
number of uncorrected faults, as shown in Fig. 7 for the two models. Again, other applications could yield other
solutions, but this approach would be applicable to various applications.
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D. Order of Occurrence Assignment vs Minimum Existing Fault Count Assignment
As described, we use two methods of assigning faults to station as follows 1) order in which faults are detected

and 2) examine the existing fault count in stations and assign where the count is minimum. To implement (2), we sort
the number of faults and assign them in ascending order. As mentioned, (1) is applicable to safety critical systems
where urgency of fault correction is paramount. On the other hand, (2) is applicable where time can be taken to batch
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the faults in an attempt to achieve test efficiency and fault correction effectiveness. A surprising result is shown in
Fig. 8 where (1) is superior to (2) because the sorted faults plot continues to increase, whereas the unsorted faults
plot reaches a maximum and then decreases. This is a fortuitous result since we are using Shuttle data.

E. Ability to Queue Faults
We would expect that the ability to queue fault — after they are detected — for subsequent correction in fault

correction stations, would increase with increasing fault input into the system. We have this expectation because, with
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increasing experience in testing a set of faults from a given application, efficiency in moving faults from detection
to queues (see Fig. 1) would increase. Fig. 9 attests to this result.

F. Tracking Number of Faults Waiting as a Function of Queue Utilization
It is important to track a key queuing performance metric, such as the number of faults waiting in queue i to be

corrected in a fault correction station, as a function of queue utilization so that the limiting value of utilization can
be identified [15]. This is shown in Fig. 10 where the utilization limit is identified based on a desired number of fault
waiting not to exceed 1.000. Queues 1–4 satisfy this criterion, but not the remaining queues. Since number of faults
waiting is a function of queue input rate, the solution would be to reduce these rates for queues 5, . . . , 13.

IV. Summary
We used analytical and simulation models to evaluate the testing efficiency and fault correction effectiveness of

the fault detection and correction process. Two models were used so that we would have a reasonableness check
on the solutions, although we must add that the analytical model yields steady state or mean value results and the
simulation model provides event-driven values. Thus, we would not expect the results to be identical. Interestingly,
Fig. 5 showed identical results. Our objectives as follows: 1) to identify the test time tradeoff function, showing
how fault removal varies with test time; 2) to identify the number of fault correction stations that produce the
best values of testing efficiency and fault correction effectiveness; 3) to identify the worst case number of stations
in terms of the number of uncorrected faults, since uncorrected faults are obviously detrimental to the reliability
of the software; and 4) since we were interested in whether assigning faults to stations on the basis of minimum
number of existing faults would be beneficial, we evaluated this alternative via simulation. More important than
specific numerical results that we obtained is the methodology that we demonstrated that can be applied to all
applications.
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